Essential Spectrum of Discrete Laplacian – Revisited
نویسندگان
چکیده
Consider the discrete Laplacian operator A acting on l2(Z). It is well known from classical literature that essential spectrum of a compact interval. In this article, we give an elementary proof for result, using finite-dimensional truncations An A. We do not rely symbol analysis or any infinite-dimensional arguments. Instead, consider eigenvalue-sequences and make use filtration techniques due to Arveson. Usage such Schrödinger multi-dimensional settings will be interesting future problems.
منابع مشابه
The Essential Spectrum of the Laplacian on Manifolds with Ends
Let V be a noncompact complete Riemannian manifold. We find a geometric condition which assures that the essential spectrum of the Laplacian on V contains a half-line, by means of fiber bundle structures and the asymptotic behavior of mean curvatures on the ends of V , and give lower bounds of the essential spectrum. Our criteria can be applied to locally symmetric spaces of finite volume and m...
متن کاملNormalized laplacian spectrum of two new types of join graphs
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
متن کاملLaplacian Spectrum Learning
The eigenspectrum of a graph Laplacian encodes smoothness information over the graph. A natural approach to learning involves transforming the spectrum of a graph Laplacian to obtain a kernel. While manual exploration of the spectrum is conceivable, non-parametric learning methods that adjust the Laplacian’s spectrum promise better performance. For instance, adjusting the graph Laplacian using ...
متن کاملThe Laplacian Spectrum of Graphs †
The paper is essentially a survey of known results about the spectrum of the Laplacian matrix of graphs with special emphasis on the second smallest Laplacian eigenvalue λ2 and its relation to numerous graph invariants, including connectivity, expanding properties, isoperimetric number, maximum cut, independence number, genus, diameter, mean distance, and bandwidth-type parameters of a graph. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: 3C TIC
سال: 2022
ISSN: ['2254-6529']
DOI: https://doi.org/10.17993/3ctic.2022.112.52-59